Frameworks and quality measures used for debriefing in team-based simulation: a systematic review

Ruth Endacott,1,2 Thomas Gale,3,4 Anita O’Connor,1 Samantha Dix2

ABSTRACT

Objectives The skill of the debriefer is known to be the strongest independent predictor of the quality of simulation encounters yet educators feel underprepared for this role. The aim of this review was to identify frameworks used for debriefing team-based simulations and measures used to assess debriefing quality.

Methods We systematically searched PubMed, CINAHL, MedLine and Embase databases for simulation studies that evaluated a debriefing framework. Two reviewers evaluated study quality and retrieved information regarding study methods, debriefing framework, outcome measures and debriefing quality.

Results A total of 676 papers published between January 2003 and December 2017 were identified using the search protocol. Following screening of abstracts, 37 full-text articles were assessed for eligibility, 26 studies met inclusion criteria for quality appraisal and 18 achieved a sufficiently high-quality score for inclusion in the evidence synthesis. A debriefing framework was used in all studies, mostly tailored to the study. Impact of the debrief was measured using satisfaction surveys (n=11) and/or participant performance (n=18). Three themes emerged from the data synthesis: selection and training of facilitators, debrief model and debrief assessment. There was little commonality across studies in terms of participants, experience of faculty and measures used.

Conclusions A range of debriefing frameworks were used in these studies. Some key aspects of debriefing for team-based simulation, such as facilitator training, the inclusion of a reaction phase and the impact of learner characteristics on debrief outcomes, have no or limited evidence and provide opportunities for future research particularly with interprofessional groups.

BACKGROUND

In simulation learning, debriefing—a discussion between two or more individuals in which aspects of a performance are explored and analysed with the aim of gaining insights that impact the quality of future clinical practice—is key, and the skill of the debriefer is the strongest independent predictor of overall quality of simulation encounters. In a conceptual paper, Haji et al argued for a distinction between simulation-based and simulation-augmented medical education, with the latter integrating the simulation learning with other educational experiences. This approach also places simulation mainstream, rather than as a special event for the privileged few. While simulation-based education is laudable, simulation is an expensive resource especially when used for small group learning. We therefore need to ensure that learning opportunities are optimised when simulation is used.

Effective interprofessional working is important for standards of patient care and is thought to be highly influenced by the attitudes of healthcare professionals. However, a report from the Centre for the Advancement of Interprofessional Education highlights that many educators feel underprepared in interprofessional, as compared with uniprofessional, settings and recommends that all facilitators receive comprehensive orientation, preparation and ongoing support for Inter Professional Education (IPE). Interprofessional team-based simulation allows learning opportunities within the correct educational and professional context and has been shown to improve communication skills and understanding of professional roles. However, debriefing interprofessional groups brings its own unique challenges due to learner differences in background, experience and professional identity requiring faculty to be trained appropriately to debrief interprofessional issues in an effective manner.

Dreifuerst used concept analysis methods to identify defining attributes of debriefing as it relates to simulation to construct model, borderline and contrary cases and to distinguish between unstructured, structured for critique and structured for reflection approaches to debrief. This is a useful addition to our understanding of debriefing but has yet to be subjected to empirical testing. Previous systematic reviews have focused on the advantages of debrief over no debrief and whether the use of video improves the debrief; however, there is a lack of research exploring the evidence base underpinning decisions about debriefing. The main aims of this study were to identify: (1) frameworks used for debriefing interprofessional and uniprofessional team-based simulations, (2) metrics that have been developed to assess the quality of debriefing and (3) evidence gaps for debriefing decisions. The term ‘debriefing framework’ is used to refer to the structure used for the debriefing discussion.

METHODS

Design

A systematic review was conducted following the procedures set out by the Centre for Reviews and Dissemination, whereby specific search terms are used in database searching and papers are selected based on an explicit inclusion and exclusion criteria. We also undertook hand searching of references and sought to identify records through other sources (eg, Google Scholar) in an attempt to include as many relevant papers as possible in the review. We aimed to identify:
1. Debriefing frameworks used for team-based (uniprofessional or interprofessional) simulation.

2. Measures to assess the quality of debriefing.

Search strategy
Four electronic databases were searched in December 2017: PubMed, CINAHL, MedLine and Embase. All peer-reviewed articles published in English between January 2003 and December 2017 were eligible for inclusion. Our preliminary searches identified many papers that were not relevant. This 15-year window was decided on for pragmatic reasons and because no relevant papers providing empirical data regarding team-based debriefing were identified prior to this date. As initial searches had identified excessive numbers of papers with either ‘framework’ or ‘method’ in the title or abstract, we refined search terms and ran a further search using the keywords: ‘Simulation’ AND (‘Debrief* OR Feedback’) AND ‘Evaluation’ AND (‘Quality OR Framework OR Method’).

Empirical studies and framework/development studies were included in the review, providing some form of outcome measure was used. Outcome measures assessed quality of the debriefing and/or performance of participants. All included studies used team-based simulation and examined technical and non-technical skills. Studies not published in English focused on individual debriefing and describing only the quality of the simulation (and not including quality or outcome of the debrief) were excluded.

Quality appraisal
Papers were assessed using the Kmet et al13 quality appraisal tool. The initial appraisal was conducted by two of the authors, with a third author meeting to discuss any differences in the scoring (RE, TG, AO and SD). Any discrepancies in scoring were discussed until consensus was reached.

RESULTS
A total of 676 citations were screened; the Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart summarises the review process (figure 1). Abstracts were reviewed for 253 papers; 41 (6.1%) were found to meet the study criteria after review of titles and abstracts by two authors (RE and AO or RE and SD). There were no disagreements on inclusion of papers. The remaining 41 full articles were interrogated and assessed for eligibility; 11 were excluded (including concept analysis, application of a theoretical framework and commentary papers).

A total of 26 papers met the full inclusion criteria and were appraised. Eight papers were excluded from the data synthesis due to a low-quality appraisal score (<0.60); this is common in narrative reviews to ensure synthesis of papers of suitable and comparable quality and that recommendations for future practice are not based on low-quality evidence.13 Tables 1 and 2 show the quality appraisal scores for the 26 papers reviewed.

A total of 18 papers were included: 1 qualitative study, 15 quantitative studies and 2 studies containing both qualitative and quantitative components. The quantitative Kmet scores ranged between 65%–100%; the two mixed methods papers14,15 and the qualitative paper16 scored 85%. Summary of the 18 included studies is provided at table 3.

Demographics
There were 2013 participants across the 18 studies (range 9–450). Twelve studies were conducted in the USA, 2 of which14,15 contained both qualitative and quantitative components, with the remaining 10 comprising quantitative data only. The remaining quantitative studies were conducted in the UK,17 Switzerland,18 Korea19 and the remaining two in Canada.20,21 The only wholly qualitative paper included in the review was conducted in the UK.16

Seven studies were conducted with interprofessional teams and four of these examined differences between the professional groups.16,18,22,23 Geis et al25 used simulation to model how a new paediatric emergency department would function and to identify latent safety threats; debriefing was structured and included video review. Changes in workload for different professional groups were analysed as the simulated workload of the department changed. LeFlore and Anderson et al23 compared two approaches to interprofessional team simulation and debriefing; changes in knowledge test scores and satisfaction with the simulation/debrief were reviewed by professional group. In the Freeth et al26 qualitative study, some excerpts from interviews identified participants by professional group, but there was no comparison between groups. Kolbe et al18 found that evaluation of their debriefing model—TeamGAINS—did not differ by job role (nurse or doctor).

Debriefing frameworks
All studies included a structured debriefing framework, mostly tailored to the individual study (see table 4). Five authors used a previously validated framework: the Ottawa Global Rating Scale,10 TeamGAINS,18 Debriefing for Meaningful Learning,24 Structured and Supported Debriefing19 and Guided Team Self Correction (GTSC).25 In 11 studies, outcome measures were used to assess debrief quality (faculty behaviours)14,15,17,18,22,24,26–29 and in 12 studies change in performance following the debrief was measured (participant behaviours).16,18,20–25,30–32

Performance measures
The majority of studies (12/18) used some measure of performance to judge the success of the debriefing framework, using a before-and-after design or comparing two debriefing frameworks (table 4). A total of 17 measures were used in the 12 studies (table 4).

Synthesis
All papers were read in full by two authors; a combination of inductive and deductive thematic analysis was used to develop codes and categories to relevant extracts and organise these findings under main thematic headings. These are presented at figure 2. Deductive codes were derived from the review aims and the inductive component allowed codes to emerge from the data. A synthesis of these findings was used to identify key themes.

Several key themes were identified through this synthesis of the findings; two authors discussed these themes until a consensus was reached. These themes were: selection and training of debrief facilitators, debrief model and assessment of debrief. The themes are discussed below; summary of the evidence, and evidence gaps, for each theme is presented at figure 2.

Selection and training of debrief facilitators
Most of the studies were conducted with a trained debrief facilitator15–18,22,24,26,29,31,32 with one research team reporting use of ‘PowerPoint plus audio’ with no indication whether the ‘audio’ was prerecorded or provided by a facilitator.18 An randomised controlled trial compared two approaches to debrief: within-team debrief, with a leader from within the team providing the debrief, and instructor-led debrief.20 Team performance, assessed using the Team Emergency Assessment Measure (TEAM),13 improved

BMJ Stel: first published as 10.1136/bmjstel-2017-000297 on 13 August 2018. Downloaded from http://stel.bmj.com/
following debrief in both groups ($F_{1,38}=7.93, p=0.008$); there was no significant difference between within-team or instructor debrief ($F_{1,38}=0.43, NS p=0.52$). Oikawa et al.32 found that self-debriefing was as effective as faculty debriefing in improving self and team performance assessment across four sequential scenarios.

Different study designs make it impossible to state that one type of facilitator is superior; performance in individual studies improved when the team leader,20 instructor,15 faculty32 or team member32 led the debrief. Similarly, no studies provided evidence that training actually makes any difference.

Debrief model

The format of debriefing reported in the studies varied in three areas: degree of structure, use of video clips and timing of the debrief.

All authors described a debrief framework, with variation in the detail provided. Three authors specify an initial reaction stage (‘how was that for you?’), followed by attention to technical and/or non-technical skills and how they were performed in the simulation scenarios; Lammers et al.15 and Van Heukelom et al.27 refer to this first stage as ‘decompression’, while Kolbe et al.18 describe it as ‘reactions’. No one structure was used across studies; most authors tailored an existing debrief framework.

Training faculty to use GTSC to structure the debrief had a significant impact on overall team performance, over traditional debrief methods ($t(11)=1.98, p=<0.05$ (one tailed)).25 The group receiving GTSC also developed mental models more similar to those developed by an expert group. In a pretest and post-test study paediatric emergency medicine fellows were trained to use a cardiac arrest debriefing model (REFLECT) with teams of four. The fellows and team members reported significant improvement in use of REFLECT components (63 vs 82%), but blinded expert reviewers reported a non-significant improvement (60 vs 76%).29
Systematic review

Table 1: Quality appraisal scores for quantitative studies

<table>
<thead>
<tr>
<th>Papers</th>
<th>Question/objective sufficiently described?</th>
<th>Study design evident and appropriate?</th>
<th>Method of subject/comparison group selection or source of information/ input variables described and appropriate?</th>
<th>Subject (and comparison group) characteristics sufficiently described?</th>
<th>If interventional and random allocation was possible, was it described?</th>
<th>If interventional and blinding of investigators was possible, was it reported?</th>
<th>If interventional and blinding of subjects was possible, was it reported?</th>
<th>Outcome and exposure measure(s) well defined and robust to measurement/ misclassification bias?</th>
<th>Sample size appropriate?</th>
<th>Analytic methods described/justified and appropriate?</th>
<th>Some estimate of variance is reported for the main results?</th>
<th>Controlled for confounding?</th>
<th>Results reported in sufficient detail?</th>
<th>Conclusions supported by the results?</th>
<th>Summary score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auerback et al</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>N/A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>0.46</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Oikawa et al</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>0.80</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Van Heukelom et al</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>0.90</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>West et al</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>0.80</td>
</tr>
<tr>
<td>Wetzel et al</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>0.80</td>
</tr>
<tr>
<td>Zinns et al (2017)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Continued
Use of Cognitive Disposition to Respond (CDR) to structure the debrief, with technical/knowledge based debrief as the control, resulted in higher satisfaction scores for the technical/knowledge based debrief. This did not reach significance. LeFlore and Anderson compared a facilitated debrief (group A) with a modified debrief (group B) in which time for questions was allowed. However, the learning interaction was also different with group A using self-directed learning and group B observing experts completing the scenario. Group B had higher satisfaction scores, but there is no indication whether this was due to the expert modelling or the modified debrief.

Video clips were included in the debrief in seven of the studies, but extent of video use described by the authors was variable. In one study, the researchers compared no debrief (control) with oral debrief (intervention 1) and oral plus video debrief (intervention 2) using a pre–post design with anaesthesia residents. There was significant improvement in total Anaesthesia Non-Technical Skills (ANTS) score ($F_{2,39}=6.10$, $p<0.005$) and scores in each of the four domains for both intervention groups but no significant difference between oral and oral+video groups on total or individual domain scores. Similarly, a pretest and post-test study comparing video-assisted debrief with oral debrief alone with nursing students reported a higher mean score on behaviour for those in the video-assisted debrief group than the control group (6.62 vs 4.23), but this did not reach significance.

In most studies, debriefing was conducted at the end of the simulation exercise; the one exception was the study conducted by Van Heukelom et al., who compared insimulation debrief (identifying learning points and errors as they arise during the simulation) and postsimulation debrief. They report that self-reported confidence and knowledge improved for both groups (Spearman’s $R=0.5$ with $p \leq 0.001$ for all results) with no significant difference between groups. However, the postsimulation debrief group had significantly higher scores for three items on the debriefing satisfaction scale. In seven studies, participants completed a further simulation scenario following the debrief, this is reviewed in detail below.
Table 3 Summary of studies included in the narrative synthesis

<table>
<thead>
<tr>
<th>Reference, country</th>
<th>Aim</th>
<th>Study design</th>
<th>Participants and sample</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Boet et al, Canada</td>
<td>Compare effectiveness of an interprofessional within-team debriefing with instructor-led debriefing on team performance during simulated crisis.</td>
<td>Randomised, controlled, repeated measures design. Teams randomised to within-team or instructor-led debriefing groups. After debriefing, teams managed different post-test crisis scenarios. Sessions were video taped, and blinded expert examiners used TEAM scale to assess performance.</td>
<td>n=120 (40 teams made up of 1 anaesthesia trainee, 1 surgical trainee, 1 staff circulating operating room nurse).</td>
<td>Team performance significantly improved from pretest to post-test, regardless of type of debriefing (F1,38=7.93, p=0.008). No significant difference in improvement between within-team or instructor-led debriefing.</td>
</tr>
<tr>
<td>2 Bond et al, USA</td>
<td>To assess learner perception of high-fidelity mannequin-based simulation and debriefing to improve understanding of ‘cognitive dispositions to respond’ (CDRs).</td>
<td>Emergency medicine (EM) residents exposed to two simulations and block-randomised to technical/knowledge debriefing before completing written survey and interview with ethnographer. Four investigators reviewed interview transcripts and qualitatively analysed comments.</td>
<td>n=62 EM residents.</td>
<td>Technical debriefing was better received than cognitive debriefing. Authors theorise that an understanding of CDRs can be facilitated through simulation training.</td>
</tr>
<tr>
<td>3 Brett-Feegler et al, USA</td>
<td>Examine reliability of Debriefing Assessment for Simulation in Healthcare (DASH) scores in evaluating quality of healthcare simulation debriefings and whether scores demonstrate evidence of validity.</td>
<td>Rater trainees familiarised with DASH before watching, rating and then discussing three separate course introductions and subsequent debriefings. Interrater reliability, interclass correlations and internal consistency were calculated.</td>
<td>n=144 international healthcare educators participated in 4.5-hour web-based interactive DASH rater training sessions (nurses, physicians, other health professionals and masters and PhD educators).</td>
<td>Differences between the ratings of the three standardised debriefings were statistically significant p<0.001. DASH scores showed evidence of good reliability and preliminary evidence of validity.</td>
</tr>
<tr>
<td>4 Forneris et al, USA</td>
<td>To investigate the impact of Debriefing for Meaningful Learning (DML) on clinical reasoning.</td>
<td>Quasi-experimental pretest and post-test repeated measure design. Teams randomly assigned to DML or usual debriefing. Clinical reasoning was evaluated using the Health Sciences Reasoning Test (HSRT).</td>
<td>n=153 Under Graduate (UG) nursing students (teams of 4).</td>
<td>Significant improvement in HSRT mean scores for the intervention group (p=0.03) with control group non significant (NS). The change in HSRT mean scores between the intervention and control groups was not significant (p=0.09).</td>
</tr>
<tr>
<td>5 Freeth et al, UK</td>
<td>Examination of participants perceptions of the multidisciplinary obstetric simulated emergency scenarios course (MOSES) designed to enhance Non Technical Skills (NTS) among obstetric teams/improve patient safety.</td>
<td>Telephone (47) or email (8) interviews with MOSES course participants and facilitators and analysis of video-recorded debriefings.</td>
<td>n=93 (senior midwives n=57, obstetricians n=21, obstetric anaesthetists n=15).</td>
<td>Many participants improved their knowledge and understanding of interprofessional team working, especially communication and leadership in obstetric crisis situations. Participants with some insight into their non-technical skills showed the greatest benefit in learning. Interprofessional simulation is a valuable approach to enhancing non-technical skills.</td>
</tr>
<tr>
<td>6 Geis et al, USA</td>
<td>Define optimal healthcare team roles and responsibilities, identify latent safety threats within the new environment and screen for unintended consequences of proposed solutions.</td>
<td>Prospective pilot investigation using laboratory and in situ simulations totalling 24 critical patient scenarios conducted over four sessions (over 3 months).</td>
<td>n=81 healthcare providers (predominantly nurses, paramedics and physicians).</td>
<td>Mayo High Performing Team Scale (MHPTS) means were calculated for each phase of training. Simulation laboratory teamwork scores showed a mean of 18.1 for the first session and 18.9 for the second session (p=0.68). In situ teamwork scores showed a mean of 12.3 for the first session and 15 for the second session (p=0.25). Overall laboratory mean was 18.5 (SD 2.31) compared with overall in situ mean of 13.7 (SD 4.40), indicating worse teamwork during in situ simulation (p=0.008).</td>
</tr>
<tr>
<td>7 Grant et al, USA</td>
<td>To compare the effectiveness of video-assisted Oral debriefing (VAOD) and oral debriefing alone (ODA) on participant behaviour.</td>
<td>Quasi-experimental pretest and post-test design. Teams were randomised to intervention (VAOD) or control (ODA). Behaviours were assessed using adapted Clinical Simulation Tool.</td>
<td>n=48 UG nursing students: 24 intervention and 24 control (teams of 4 or 5 students).</td>
<td>The VAOD group had higher mean score (6.62, SD 6.07) than the control group (4.23, SD 4.02), but this did not reach significance (p=0.11).</td>
</tr>
<tr>
<td>8 Hull et al, UK</td>
<td>To explore the value of 360° evaluation of debriefing by examining expert debriefing evaluators, debriefers and learners' perceptions of the quality of interdisciplinary debriefings.</td>
<td>Cross-sectional observational study. The quality of debriefing was assessed using the validated Objective Structured Assessment of Debriefing framework.</td>
<td>n=278 students, in 41 teams.</td>
<td>Expert debriefing evaluators and debriefers’ perceptions of debriefing quality differed significantly; debriefers perceived the quality of debriefing they provided more favourably than expert debriefing evaluators. Learner perceptions of the quality of debriefing differed from both expert evaluators and debriefers’ perceptions.</td>
</tr>
</tbody>
</table>

Continued.
<table>
<thead>
<tr>
<th>Reference, country</th>
<th>Aim</th>
<th>Study design</th>
<th>Participants and sample</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Kim et al., 2019 Korea</td>
<td>To compare the educational impact of two post simulation debriefing methods: focused and corrective feedback (FCF) versus structured and supported debriefing (SSD) on team dynamics in simulation-based cardiac arrest team training.</td>
<td>A pilot randomised controlled study. Primary outcome: improvement in team dynamics scores between baseline and test simulation. Secondary outcomes: improvements in team clinical performance scores, self-assessed comprehension of and confidence in cardiac arrest management and team dynamics.</td>
<td>n=95 4th year UG medical students randomly assigned to FCF or SSD, teams of 6.</td>
<td>The SSD team dynamics score post-test was higher than at baseline (baseline: 74.5 (65.9–80.9), post-test: 85.0 (71.9–87.6), p=0.035). No differences in improvement in team dynamics or team clinical performance scores between the two groups (p=0.328, respectively).</td>
</tr>
<tr>
<td>10 Kolbe et al., 2013 Switzerland</td>
<td>To describe the development of an integrated debriefing approach and demonstrate how trainees perceive this approach.</td>
<td>Post-test-only (debriefing quality) and a pretest and post-test (psychological safety and leader inclusiveness), no-control group design. Debriefing administered during a simulation-based combined clinical and behavioural skills training day for anaesthesia staff (doctors and nurses). Each trainee participated and observed in four scenarios and also completed a self-report debriefing quality scale.</td>
<td>n=61 (4 senior anaesthetists, 29 residents, 28 nurses) from a teaching hospital in Switzerland participated in 40 debriefings resulting in 235 evaluations. All attended voluntarily and participated in exchange for credits.</td>
<td>Utility of debriefings evaluated as highly positive, while pre-post comparisons revealed psychological safety and leader inclusiveness increased significantly after debriefings.</td>
</tr>
<tr>
<td>11 Lammers et al., USA</td>
<td>To identify causes of errors during simulation, prehospital paediatric emergency.</td>
<td>Quantitative (cross-sectional, observation) and qualitative research. Crews participated in simulation using own equipment and drugs. Scoring protocol used to identify errors. Debriefing conducted by trained facilitator immediately after simulated event elicited root causes of active and latent errors.</td>
<td>n=90 (m=67%, f=33%) Two-person crews (45 in total) made up of: Emergency Medicine Technician (EMT)/paramedic, paramedic/paramedic, paramedic/specialist.</td>
<td>Simulation, followed immediately by facilitated debriefing, uncovered underlying causes of active cognitive, procedural, affective and teamwork errors, latent errors and error-producing conditions in EMS paediatric care.</td>
</tr>
<tr>
<td>12 LeFlore and Anderson, USA</td>
<td>To determine whether self-directed learning with facilitated debriefing during team-simulated clinical scenarios has better outcomes compared with instructor-modelled learning with modified debriefing.</td>
<td>Participants randomised to either the self-directed learning with facilitated debriefing group (group A: seven teams) or instructor-modelled learning with modified debriefing group (group B: six teams). Tools assessed students' pre/post knowledge (discipline-specific), satisfaction (5-point Likert scale open-ended questions), technical and team behaviours.</td>
<td>Convenience sample of students; nurse practitioner, registered nurse, social work, respiratory therapy. Thirteen interdisciplinary teams participated, with one student from each discipline per team.</td>
<td>Group B was significantly more satisfied than group A (p=0.01). Group B registered nurses and social worker students were significantly more satisfied than group A (30.0±0.50 vs 26.2±3.0, p = 0.03 and 28.0±2.0 vs 24.0±3.3, p=0.04, respectively). Group B had significantly better scores than group A on 8 of the 11 components of the Technical Evaluation Tool; group B intervened more quickly. Group B had significantly higher scores on 8 of 10 components of the Behavioral Assessment Tool and overall team scores.</td>
</tr>
<tr>
<td>13 Oikawa et al., USA</td>
<td>To determine if learner self-performance assessment (SPA) and team-performance assessment (TPA) were different when simulation-based education (SBE) was supported by self-debriefing (S-DB), compared with traditional facilitator-led debriefing (F-DB).</td>
<td>Prospective, controlled cohort intervention study. Primary outcome measure: SPA and TPA assessed using bespoke global rating scales with subdomains: patient assessment, patients treatment and teamwork.</td>
<td>n=57 postgraduate year 1 medical interns randomised to 9 F-DB and 10 S-DB. Teams completed four sequential scenarios.</td>
<td>Learner SPA and TPA scores improved overall from the first to the fourth scenarios (p<0.05). F-DB versus S-DB cohorts did not differ in overall SPA scores.</td>
</tr>
<tr>
<td>14 Reed, USA</td>
<td>To explore the impact on debriefing experience of three types of debrief: discussion only, discussion+blogging and discussion+journaling.</td>
<td>Experimental design with random assignment. Primary outcome measure: Debriefing Experience Scale (DES).</td>
<td>n=48 UG nursing students randomly assigned to ‘discussion’, ‘blogging’ or ‘journaling’.</td>
<td>DES score highest for discussion only, followed by journaling and then blogging. Differences reached statistical significance for only 3 of the 20 DES items.</td>
</tr>
<tr>
<td>Reference, country</td>
<td>Aim</td>
<td>Study design</td>
<td>Participants and sample</td>
<td>Findings</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>15 Savoldelli et al21 USA</td>
<td>To investigate the value of the debriefing process during simulation and to compare the educational efficacy of oral and videotape-assisted oral feedback against no debriefing (control).</td>
<td>Prospective, randomised, controlled, three-arm, repeated measures study design. After completing pretest scenario, participants randomly assigned to control, oral or videotape-assisted oral feedback condition. Debrief focused on non-technical skills performance followed by a post-test scenario. Trained evaluators scored participants using Anaesthesia Non-Technical Skills scoring system. Video tapes reviewed by two blinded independent assessors to rate non-technical skills.</td>
<td>n=42 anaesthesia residents in postgraduate years 1, 2 and 4.</td>
<td>Statistically significant improvement in non-technical skills for both oral and videotape-assisted oral feedback groups (p<0.005) but no difference between groups or improvement in control group. The addition of video review did not provide any advantage over oral feedback alone.</td>
</tr>
<tr>
<td>16 Smith-Jentsch et al,25 USA</td>
<td>To investigate the effects of guided team self-correction using an expert model of teamwork as the organising framework.</td>
<td>Study 1: cohort design with data collected over 2 years. Year 1: data on 15 teams collected using existing Navy method of prebriefing and debriefing. Instructors then trained using guided team self-correction method. Year 2: data collected on 10 teams, briefed and debriefed by instructors trained from year 1. Study 2: teams were randomly assigned to the experimental or control condition.</td>
<td>Study 1: n=385 male members of 25 US Navy submarine attack centre teams, teams ranged from 7 to 21 in size. Study 2: n=65 male lieutenants in the US Navy, randomly assigned to five-person teams.</td>
<td>Teams debriefed using expert model-driven guided team self-correction approach developed more accurate mental models of teamwork (study 1) and demonstrated greater teamwork processes and more effective outcomes (study 2).</td>
</tr>
<tr>
<td>17 Van Heukelom et al,27 USA</td>
<td>To compare two styles of managing a simulation session: postsimulation debriefing versus insimulation debriefing.</td>
<td>Observational study with a retrospective pre-post survey (using 7-point Likert scale) of student confidence levels, teaching effectiveness of facilitator, effectiveness of debriefing strategy and realism of simulation. Participants randomly assigned to either postsimulation or insimulation debriefing conditions.</td>
<td>n=160 students (third year medical students enrolled in the ‘Clinical Procedures Rotation’).</td>
<td>Statistically significant differences between groups. Students in the postsimulation debriefing ranked higher in measures for effective learning, better understanding actions and effectiveness of debrief.</td>
</tr>
<tr>
<td>18 Zinns et al,29 USA</td>
<td>To create and assess the feasibility of a post resuscitation debriefing framework (Review the event, Encourage team participation, Focused feedback, Listen to each other, Emphasize key points, Communicate clearly, Transform the future - REFLECT).</td>
<td>Feasibility pretest and post-test study. Outcome measure: presence of REFLECT components as measured by the paediatric emergency medicine (PEM) fellows, team members and blinded reviewers.</td>
<td>n=9 PEM fellows completed the REFLECT training (intervention) and led teams of 4.</td>
<td>Significant improvement in overall use of REFLECT reported by PEM fellows (63% to 83%, p<0.01) and team members (63% to 82%, p<0.001), Blinded reviewers found no statistical improvement (60% to 76%, p=0.09).</td>
</tr>
</tbody>
</table>
The studies reviewed provide evidence that debriefing frameworks can improve outcomes; however, there is no evidence that including a reaction phase or using video makes any difference to outcomes.

Assessment of the debrief

There were two approaches to assessment of debrief: assessment of debrief quality and change in performance following the debrief.

The quality of the debrief was assessed through satisfaction scores or through analysis of debrief videos. Satisfaction was rated by participants or faculty, or both. Kolbe et al also measured psychological safety and leader inclusiveness before and after the debrief and found both measures significantly improved (t(59) = −2.26, p = 0.028 and t(60) = −2.07, p = 0.048). In four studies, analysis of debrief videos was conducted using an existing tool: Brett-Fleegler et al used a Root Cause Analysis (RCA) framework to examine the quality of RCA processes in a simulated prehospital paediatric emergency. Hull et al used Objective Structured Assessment of Debriefing (OSAD) with expert debriefing evaluators and faculty debriefing, and Zinns et al used the REFLECT postresuscitation debriefing framework.

Significant improvement in performance following debrief was reported in several studies. Change in performance was assessed using: (1) a (different) simulation scenario conducted after the debrief; (2) participant knowledge, assessed using a pre/post knowledge test; (3) participant self-reported confidence and knowledge and (4) mental model accuracy.

The postdebrief simulation performance was assessed using a range of existing measures: the Mayo High Performing Team Scale, the TEAM, ANTS, Behaviour Assessment Tool, based on CRM principles and validated in previous studies by the authors, the Health Sciences Reasoning Test, Team Dynamics and Team Clinical Performance. In the Geis et al study, the phase 1 (predebriefing) simulation was conducted in the simulation lab, and the phase 2 (postdebriefing) was conducted in the hospital, hence change in behaviour could not be attributed solely to the debrief.

Despite some studies using more than one performance measure, none of the studies reported correlations across performance measures. Where performance data were analysed in the context of demographic data items, these were mainly limited to professional group and work experience.

DISCUSSION

There was little commonality across the papers in terms of participants, experience of faculty and measures used; however, all

Table 4 Debriefing frameworks and measures used in the 18 studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Debriefing framework</th>
<th>Outcome measure</th>
<th>Quality of debrief</th>
<th>Participant performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boet et al</td>
<td>Ottawa Global Rating Scale</td>
<td>Team Emergency Assessment Measure</td>
<td>Survey</td>
<td></td>
</tr>
<tr>
<td>Bond et al</td>
<td>Technical/knowledge (B). Cognitive (B).</td>
<td>Survey/ interview (B).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brett-Fleegler et al</td>
<td>Debrief framework to show (i) superior, (ii) average and (iii) poor debriefing (B).</td>
<td>DASH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeth et al</td>
<td>Structured (B).</td>
<td>Kirkpatrick framework adapted for IPE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forneris et al</td>
<td>Debriefing for Meaningful Learning.</td>
<td>DASH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geis et al</td>
<td>Structured (B).</td>
<td>Survey (B).</td>
<td>Technical evaluation (B).</td>
<td></td>
</tr>
<tr>
<td>Grant et al</td>
<td>Video-assisted oral debriefing (B). Oral debriefing alone (B).</td>
<td>Behavioural assessment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hull et al</td>
<td>Structured (B).</td>
<td>OSAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim et al</td>
<td>Focused and corrective feedback (B). Structured and supported debriefing</td>
<td>Team dynamics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolbe et al</td>
<td>TeamGAINS.</td>
<td>Survey based on DASH and OSAD.</td>
<td>Psychological safety.</td>
<td>Leader inclusiveness.</td>
</tr>
<tr>
<td>Lammers et al</td>
<td>Structured (B).</td>
<td>Interview (B).</td>
<td>Knowledge assessment (B).</td>
<td></td>
</tr>
<tr>
<td>LeFlore and Anderson</td>
<td>Facilitated debrief (B). Modified debrief (B).</td>
<td>Survey (B).</td>
<td>Technical evaluation (B).</td>
<td></td>
</tr>
<tr>
<td>Reed</td>
<td>Discussion debrief (B). Discussion+journal (B). Discussion+blog (B).</td>
<td>DES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savoldelli et al</td>
<td>Structured (B).</td>
<td>ANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith-Jentsch et al</td>
<td>Guided team self-correction.</td>
<td>Mental models of teamwork (B).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Heukelom et al</td>
<td>Insimulation debriefing (B). Postsimulation debriefing (B).</td>
<td>Survey (B).</td>
<td>Self-reported confidence (B).</td>
<td></td>
</tr>
<tr>
<td>Zinns et al</td>
<td>REFLECT (B).</td>
<td>REFLECT criteria (B).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ANTS, Anaesthesia Non-Technical Skills; B, bespoke; DASH, Debriefing Assessment for Simulation in Healthcare; DES, Debriefing Experience Scale; OSAD, Objective Structured Assessment of Debriefing.
studies used a debriefing framework to provide structure for the
debriefs often underpinned by theoretically derived methods to
facilitate interaction of participants. Eighteen different debriefing
frameworks were described, showing divergence in preferred
debriefing techniques and strategies among the studies, but the
frameworks commonly started with a ‘reaction’ or ‘decompres-
sion’ phase to encourage self/team reflection. The reaction phase
assumes that participants will ‘let off steam’ during the first few
minutes of a simulation debrief, which provides facilitators with
content that should be discussed at some stage in the debrief
but also allows participants to express their emotions straight
away and provide a more balanced environment for objective
reflection later in the debrief. None of the studies compared
this reaction phase with no reaction phase so the impact is
unknown. All debriefing frameworks covered either technical
or non-technical aspects, or both and some studies compared
participant reactions to either technical/non-technical aspects.
Non-technical skills were addressed through the use of expert
models such as crisis resource management principles or through
techniques such as CDR and Advocacy Inquiry (AI) aimed at
identifying mental models of participants, which lead to certain
behaviours. Bond et al found that technical debriefing
was better received by participants than cognitive debriefing,
although Dreifuerst reported that learners prefer debrief with
reflection.

The debriefing model described by Kolbe and colleagues reflects the recommendations of several earlier authors and
comprises six steps: reactions; debrief clinical component;
transfer from simulation to reality; reintroduce the expert model;
summarise the debriefing; and practice/improve clinical skills as

Figure 2 Evidence and evidence gaps for decisions about debrief.
Debriefing theory

Different techniques are used to focus the debrief on individuals and team members as well as observers. Debriefing models utilised a range of theoretical techniques to facilitate interaction of the whole group through guided team self-correction, peer assessment, self and team reflection. Guided team self-correction and circular questioning are techniques that switch the focus to the whole team and encourage active participation and refection from all members of the group. Smith-Jentsch et al developed the technique of GTSC, where members of the team are responsible for identifying their own team performance problems plus process-oriented goals for improvement. In GTSC, an expert model of teamwork is used as an organisational framework at the briefing and then debriefing stages when participants are asked to discuss both positive and negative examples of each component. Debriefing theory developed by Salas and colleagues makes the assumption that the use of an expert model provides a common language for participants to use during team debriefs, which helps to form shared team mental models that match the expert framework. Reflecting on both positive and negative examples of behaviour has been found to develop stronger mental models and focusing on a few critical performance issues to identify learner ‘process oriented goals’ helps to ensure that learning is not scenario specific. High-level facilitation allows participants to contribute to the majority of discussion in the debrief, which maximises individual reflection and team-based reflexivity so that the learners are reaching a deeper level of understanding about the interactions which have taken place, rather than listening to expert opinion by the debriefier. With techniques such as GTSC, the debriefier facilitates a non-judgemental perspective without expressing their own expert opinion until the latter stages of the debrief, if at all.

In contrast, AI is more instructor led where the debriefier will highlight a performance gap encountered by an individual during the simulation and use direct questioning to uncover underlying mental frames that led to certain actions or behaviours. The conceptual framework and underlying theory assumes that by exploring the mental frames or thought processes that have led to certain behaviours, the learner is able to rewire these thought processes for similar situations in the future, resulting in different actions or interactions.

A central tenet across debriefing theories for teams is the development of a shared understanding across participants and facilitator. However, the seven studies we reviewed that were conducted with interprofessional teams did not appear to test mental model consistency across professions.

Training of debriefers

The majority of studies used trained debrief facilitators to conduct the debrief, although two studies showed that self-debrief within teams was as effective as instructor-led debrief. Cheng and colleagues, in their systematic review of debriefing features, outcomes and effectiveness, found that there may be benefits in expert modelling, although meta-analysis of relevant studies revealed non-significant effects.

When instructors perform debriefs, insimulation debriefing does not work as well as postsimulation debriefing. A study examining student perceptions of debriefing also revealed that students prefer debriefing immediately following the simulation and that timing was more important than the debriefing model. However, comparison of studies by Cheng and colleagues suggest that factors such as task complexity and individual or team-based learning may be better indicators for the timing of debriefing. Further training in specific techniques such as GTSC and CDR raises the quality of debriefings, so it is important to use experienced facilitators, an agreed/previously validated debriefing framework and to supplement facilitator training with technique-specific instruction to optimise debriefing quality. Standards of best practice for simulation advocate that the debrief facilitator has specific training and has witnessed the simulation activity. Debriefing frameworks encourage facilitators to focus on a few critical issues, include a range of formats and address technical and cognitive aspects, non-technical skills and transfer of learning into practice.

Quality metrics

We identified four previously validated metrics used to measure the quality of debriefs: DASH, OSAD, REFLECT and DES, with DASH and OSAD the preferred metric in more than one study. These metrics use faculty, participant or objective raters to score aspects of faculty performance except the DES, which assesses participant feelings as a result of the debriefing experience. While these instruments have good evidence of reliability and validity, further studies are needed to establish validity in different contexts and compare the utility of different tools.

Integration with previous work

Previous systematic reviews have shed light on the advantages of debrief over no debrief and the lack of evidence that the use of video improves the debrief. Our review supports both of these findings. Methods of debriefing have been reviewed in previous narrative reviews and systematic reviews. Of note, Cheng and colleagues were only able to conduct meta-analysis on a small number of the 177 studies included in their systematic review, due to incomplete reporting by researchers. In a more theoretical approach, the defining attributes of debriefing identified by Dreifuerst—reflection, emotion, reception, and integration and assimulation—enabled the author to identify model, borderline and contrary cases, in line with the concept analysis method.

The main contribution of this systematic review has been to identify debriefing frameworks some of which have been validated in various contexts using theoretical approaches. However, the number of bespoke frameworks used highlights the diversity of debriefing practice and approaches to outcome measurement and that more work should be done to compare debriefing frameworks in order to develop evidence for best practice.

Learning environment

Creating the right environment has been eloquently described as a ‘task–relationship dilemma’ between the need to provide honest feedback on the task without damaging the relationship between teacher and learner. The studies included in our review suggest that greater attention is being paid to this, as evidenced by validation of measures for the assessment of perceived psychological safety and in the debriefing and evaluation of satisfaction. The use of video as part of the debrief is not required. This model, as a whole, was shown to have some benefits but our review has shown varying degrees of evidence for each of these steps, as illustrated in figure 2.
Implications for current practice and future research

Our review suggests that the use of a debrief framework improves debrief quality, subsequent behaviours and team-work performance. The findings strongly support the use of a validated debrief framework by debriefers, but investment in preparation of the faculty is also important to supplement facilitator training with technique-specific instruction to optimise debriefing quality. Further research is needed to validate measures of debrief quality in different contexts and outcome following debriefing. The number of bespoke instruments used across the studies illustrates the difficulty with conducting reviews such as this, particularly with limitations to meta-analysis. It would be worth considering whether there are key outcomes (and associated outcome measures) that should be considered good practice for simulation research, similar to the core outcomes dataset approach being promulgated for clinical research (http://www.comet-initiative.org/).

Some key aspects of debrief for team-based simulation, such as facilitator training, the inclusion of a reaction phase and the impact of learner characteristics on debrief outcomes, have no or limited evidence and provide opportunities for future research, particularly with interprofessional groups.

Contributors
All authors fulfil the criteria for authorship; no one who fulfils the criteria for authorship has been excluded. Contributions were as follows: study planning (TG, RE and AO), study conduct (all authors) and development of the manuscript (all authors).

Funding
This work was supported by the UK Higher Education Authority Teaching Development Grant number GEN-620.

Competing interests
None declared.

Provenance and peer review
Not commissioned; externally peer reviewed.

REFERENCES